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Quasiregular functions on R"” generalize analytic functions on C.

A continuous function f : U — R"” on a domain U C R" is called

quasiregular if f € W, (U) and there exists K > 1 such that

|DF(x)||” < Kdg(x)  a.e.in U.

More generally, a continuous function f : R” — R"” U {o0} is called
quasiregular (or quasimeromorphic) if the set of poles f~'(c0) is
discrete and if f is quasiregular on R" \ =1 (o).




The Zorich map Z : R® — R3\ {0} is a quasiregular analogue of the
exponential function. It can be defined as follows:

@ Choose a bi-Lipschitz map
h:[-3,32 = {(x,y.2) : X2+ y2 + 22 =1, z > O}.
Q Define Z:[-3,5]2 xR — {(x,y,2) : >0} by
Z(x,y,z) = €e’h(x,y).

@ Extend Z to all of R3 by repeatedly reflecting in planes.

The Zorich map is quasiregular on R? and doubly-periodic with periods
(27,0,0) and (0, 27, 0).



Quasiregular maps of R” which generalize the sine and cosine
functions have been constructed by Drasin, by Mayer and by
Bergweiler and Eremenko.

Constructed by mapping a half-infinite beam to a half-space,
then reflecting in planes.

By iterating their map S, Bergweiler and Eremenko obtained a
seemingly paradoxical decomposition of R".

They also showed that the escaping set
I(S) = {x e R": SK(x) = o0 as k — o}

is dense in R".



Dynamics of the gr sine analogue S : R” — R”

We say x is a periodic point of S if SP(x) = x for some p.

Theorem
The periodic points of S are dense in R".

Corollary
d1(S) = R".

Theorem
S has the blowing-up property everywhere in R"; that is,

|J §¥(U) =R", for any non-empty open U C R".
k=0

...s0 the “Julia set” of S is equal to R".



In the rest of this talk we will

construct a 3-dimensional quasimeromorphic analogue
T : R® — R3 of the meromorphic tangent function

compare the dynamics of AT and Atanz for A > 0.



Observe that the complex function

i(1 — €%<)
e =
is the composition of a Mdbius map and the exponential function.
Define a sense-preserving Mobius map A : R — R3 U {co} by

(2x,2y,—2(z+ 1))

A(X,y,Z):(0,0,‘I)‘i‘ X2+y2+(z+1)2‘

We then define our 3-dimensional analogue of tangent by

T(x) = (Ao Z)(2x).



T contains embedded copies of the usual (complex) tangent function:
T(0,y,z) = (0, Re(tan(y + iz)), Im(tan(y + iz))),

T(x,0,z) = (Re(tan(x + iz)), 0, Im(tan(x + iz))).

If M(x,y) = max{|x|,|y|} < n/4 and we write { = M(x,y) + iz
then

T(x,y,z) = e(tan¢ Re(tan ¢), Im(tan()).



Comparing T with tan, the z-axis plays the role of the imaginary axis,
while the xy-plane plays the role of the real axis.

T is doubly-periodic with periods (,0,0) and (0, 7, 0).
T omits the values (0,0, +1). These are asymptotic values of T:

lim T(x,y,z)=(0,0,£1).

Z—+o0

T : {xy-plane} — {xy-plane} U {oco}.
The {z > 0} and {z < 0} half-spaces are completely invariant
under T.

T is highly symmetric: If R is a reflection in a co-ordinate plane then



For a parameter A > 0, Devaney and Keen described the dynamics of
the meromorphic tangent family 7,(¢) = Atanc¢.

If0 < X\ <1, then J(r)) C R is locally a Cantor set.
Attracting fixed point at origin.
If X\ =1, then J(7)) = R. Parabolic fixed point at origin.

If X > 1, then J(7) = R. Attracting fixed points at +i§,, where
&o > 0 solves £y = Atanh &.




For A > 0 we put
Ta(x) = AT(x).

We iterate T, and aim to establish an analogue of the Atan ¢ results.

First, we describe the behaviour on the upper and lower half-spaces.

If0 < XA < 1, then Ty has an attracting fixed point at the origin.
If0 < X\ <1, then TE(X) — 0 on {(x,y,z): z+# 0}, as k — occ.

If X > 1, then T, has attracting fixed points at (0,0, +&y), where
& = Manh &, and

TK(x) = (0,0,+&) on {(x,y,z):+z> 0}.




For a meromorphic function f with poles, the Julia set J(f) satisfies

where I(f) = {¢ : fX({) — oo as k — oo}.

Forall\ > 0,

07, () = 0I(Ty) = [(T»).

Call this set J. Then J is an uncountable perfect set.
If U is an open set that meets J then, for some m > 0,

T(U) = (R®U {00}) \ {(0,0,£1)}.

J is contained in the closure of the set of periodic points of T,.




J = O7 (00) = 0I(T,) C {xy-plane}

A

If \ > 1 then J is connected. If0 < A\ < 1 then J is not connected.

Open questions: When 0 < A < 1, is J locally Cantor?
Does J equal {x : T{(x) 4 0}?

If A > \/2 then J = {xy-plane}.
The constant v/2 here cannot be replaced by any smaller value.

When \ < /2, a (relatively) open subset of the xy-plane lies in the
attracting basin of 0 . ..



Attracting basin of 0

A=115

Each square is the subset [, Z]2 of the xy-plane.
The shaded points lie in the basin of attraction of 0.



A numerical plot for A = 0.9. Blue points — 0 fast, red points — 0 slow.
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A numerical plot for A = 1. Blue points — 0 fast, red points — 0 slow.
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Around a pole for A = 0.7. Thanks to Dan Goodman for code.




