Iteration of quasiregular analogues of trigonometric functions

Dan Nicks

University of Nottingham

September 2012

Joint work with Alastair Fletcher

Contents

- Introduction to quasiregular mappings of ℝⁿ
- Dynamics of a quasiregular version of sine
- Dynamics of a quasiregular version of tangent

Quasiregular mappings

Quasiregular functions on \mathbb{R}^n generalize analytic functions on \mathbb{C} .

Definition

A continuous function *f* : *U* → ℝⁿ on a domain *U* ⊆ ℝⁿ is called quasiregular if *f* ∈ *W*¹_{n,loc}(*U*) and there exists *K* ≥ 1 such that

$$\|Df(\mathbf{x})\|^n \leq KJ_f(\mathbf{x})$$
 a.e. in U .

• More generally, a continuous function $f : \mathbb{R}^n \to \mathbb{R}^n \cup \{\infty\}$ is called quasiregular (or quasimeromorphic) if the set of poles $f^{-1}(\infty)$ is discrete and if f is quasiregular on $\mathbb{R}^n \setminus f^{-1}(\infty)$.

(日) (日) (日) (日) (日) (日) (日)

The Zorich mapping

The Zorich map $Z : \mathbb{R}^3 \to \mathbb{R}^3 \setminus \{\mathbf{0}\}$ is a quasiregular analogue of the exponential function. It can be defined as follows:

Choose a bi-Lipschitz map

$$h: [-rac{\pi}{2}, rac{\pi}{2}]^2 \to \{(x, y, z): x^2 + y^2 + z^2 = 1, \ z \ge 0\}.$$

2 Define $Z: [-\frac{\pi}{2}, \frac{\pi}{2}]^2 \times \mathbb{R} \to \{(x, y, z) : z \ge 0\}$ by

$$Z(x,y,z)=e^{z}h(x,y).$$

Solution \mathbb{Z} is all of \mathbb{R}^3 by repeatedly reflecting in planes.

The Zorich map is quasiregular on \mathbb{R}^3 and doubly-periodic with periods $(2\pi, 0, 0)$ and $(0, 2\pi, 0)$.

Trigonometric analogues

- Quasiregular maps of \mathbb{R}^n which generalize the sine and cosine functions have been constructed by Drasin, by Mayer and by Bergweiler and Eremenko.
- Constructed by mapping a *half*-infinite beam to a half-space, then reflecting in planes.
- By iterating their map S, Bergweiler and Eremenko obtained a seemingly paradoxical decomposition of ℝⁿ.
- They also showed that the escaping set

$$I(S) = {\mathbf{x} \in \mathbb{R}^n : S^k(\mathbf{x}) \to \infty \text{ as } k \to \infty}$$

is dense in \mathbb{R}^n .

Dynamics of the qr sine analogue $S : \mathbb{R}^n \to \mathbb{R}^n$

We say **x** is a *periodic point* of *S* if $S^{p}(\mathbf{x}) = \mathbf{x}$ for some *p*.

Theorem

The periodic points of *S* are dense in \mathbb{R}^n .

Corollary

 $\partial I(S) = \mathbb{R}^n.$

Theorem

S has the blowing-up property everywhere in \mathbb{R}^n ; that is,

$$igcup_{k=0}^{\infty} \mathcal{S}^k(\mathcal{U}) = \mathbb{R}^n, \quad ext{for any non-empty open } \mathcal{U} \subseteq \mathbb{R}^n.$$

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = ● ののの

...so the "Julia set" of *S* is equal to \mathbb{R}^n .

In the rest of this talk we will

• construct a 3-dimensional quasimeromorphic analogue $T : \mathbb{R}^3 \to \mathbb{R}^3$ of the meromorphic tangent function

• compare the dynamics of λT and $\lambda \tan z$ for $\lambda > 0$.

Construction of a generalized tangent mapping

Observe that the complex function

$$\tan\zeta=\frac{i(1-e^{2i\zeta})}{1+e^{2i\zeta}}$$

is the composition of a Möbius map and the exponential function.

Define a sense-preserving Möbius map $A:\mathbb{R}^3\to\mathbb{R}^3\cup\{\infty\}$ by

$$A(x,y,z) = (0,0,1) + \frac{(2x,2y,-2(z+1))}{x^2 + y^2 + (z+1)^2}.$$

We then define our 3-dimensional analogue of tangent by

$$T(\mathbf{x}) = (A \circ Z)(2\mathbf{x}).$$

Expressions for T

T contains embedded copies of the usual (complex) tangent function:

•
$$T(0, y, z) = (0, \operatorname{Re}(\operatorname{tan}(y + iz)), \operatorname{Im}(\operatorname{tan}(y + iz))),$$

•
$$T(x,0,z) = (\operatorname{Re}(\operatorname{tan}(x+iz)), 0, \operatorname{Im}(\operatorname{tan}(x+iz))).$$

If $M(x, y) = \max\{|x|, |y|\} \le \pi/4$ and we write $\zeta = M(x, y) + iz$, then

$$T(x, y, z) = \left(\frac{x}{\sqrt{x^2 + y^2}} \operatorname{Re}(\tan \zeta), \frac{y}{\sqrt{x^2 + y^2}} \operatorname{Re}(\tan \zeta), \operatorname{Im}(\tan \zeta)\right)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Geometric properties of T

Comparing T with tan, the *z*-axis plays the role of the imaginary axis, while the *xy*-plane plays the role of the real axis.

- *T* is doubly-periodic with periods $(\pi, 0, 0)$ and $(0, \pi, 0)$.
- *T* omits the values $(0, 0, \pm 1)$. These are asymptotic values of *T*:

$$\lim_{z\to\pm\infty}T(x,y,z)=(0,0,\pm 1).$$

- $T: \{xy\text{-plane}\} \rightarrow \{xy\text{-plane}\} \cup \{\infty\}.$
- The {z > 0} and {z < 0} half-spaces are completely invariant under T.

T is highly symmetric: If R is a reflection in a co-ordinate plane then

$$T(R(\mathbf{x})) = R(T(\mathbf{x})).$$

Iteration of tangent maps on $\ensuremath{\mathbb{C}}$

For a parameter $\lambda > 0$, Devaney and Keen described the dynamics of the meromorphic tangent family $\tau_{\lambda}(\zeta) = \lambda \tan \zeta$.

Theorem (Devaney and Keen)

- If 0 < λ < 1, then J(τ_λ) ⊆ ℝ is locally a Cantor set. Attracting fixed point at origin.
- If $\lambda = 1$, then $J(\tau_{\lambda}) = \mathbb{R}$. Parabolic fixed point at origin.
- If $\lambda > 1$, then $J(\tau_{\lambda}) = \mathbb{R}$. Attracting fixed points at $\pm i\xi_0$, where $\xi_0 > 0$ solves $\xi_0 = \lambda \tanh \xi_0$.

(日) (日) (日) (日) (日) (日) (日)

Dynamics of λT

For $\lambda > 0$ we put

$$T_{\lambda}(\mathbf{x}) = \lambda T(\mathbf{x}).$$

We iterate T_{λ} and aim to establish an analogue of the $\lambda \tan \zeta$ results.

First, we describe the behaviour on the upper and lower half-spaces.

Theorem

- If $0 < \lambda < 1$, then T_{λ} has an attracting fixed point at the origin.
- If $0 < \lambda \leq 1$, then $T_{\lambda}^{k}(\mathbf{x}) \rightarrow \mathbf{0}$ on $\{(x, y, z) : z \neq 0\}$, as $k \rightarrow \infty$.
- If $\lambda > 1$, then T_{λ} has attracting fixed points at $(0, 0, \pm \xi_0)$, where $\xi_0 = \lambda \tanh \xi_0$, and

$$T^k_\lambda(\mathbf{x})
ightarrow (0,0,\pm\xi_0)$$
 on $\{(x,y,z):\pm z>0\}.$

What's a Julia set?

For a meromorphic function f with poles, the Julia set J(f) satisfies

$$J(f)=\overline{O_f^-(\infty)}=\partial I(f),$$

where $I(f) = \{\zeta : f^k(\zeta) \to \infty \text{ as } k \to \infty\}.$

Theorem

For all $\lambda > 0$,

$$O^-_{T_{\lambda}}(\infty) = \partial I(T_{\lambda}) = \overline{I(T_{\lambda})}.$$

Call this set J. Then J is an uncountable perfect set. If U is an open set that meets J then, for some m > 0,

$$T^m_\lambda(U) = (\mathbb{R}^3 \cup \{\infty\}) \setminus \{(0,0,\pm\lambda)\}.$$

J is contained in the closure of the set of periodic points of T_{λ} .

What does J look like?

$$J = \overline{\mathcal{O}_{\mathcal{T}_{\lambda}}^{-}(\infty)} = \partial I(\mathcal{T}_{\lambda}) \subseteq \{xy\text{-plane}\}$$

Theorem

If $\lambda \geq 1$ then J is connected. If $0 < \lambda < 1$ then J is not connected.

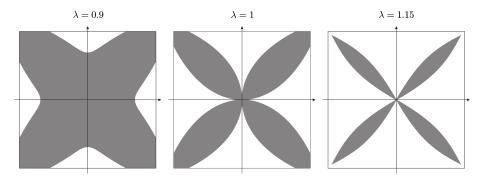
Open questions: When $0 < \lambda < 1$, is *J* locally Cantor? Does *J* equal { $\mathbf{x} : T_{\lambda}^{k}(\mathbf{x}) \neq \mathbf{0}$ }?

Theorem

If $\lambda > \sqrt{2}$ then $J = \{xy\text{-plane}\}$. The constant $\sqrt{2}$ here cannot be replaced by any smaller value.

When $\lambda < \sqrt{2}$, a (relatively) open subset of the *xy*-plane lies in the attracting basin of **0**...

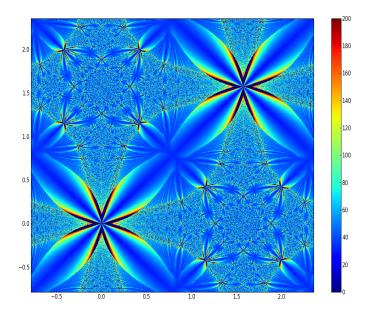
Attracting basin of **0**



Each square is the subset $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]^2$ of the *xy*-plane. The shaded points lie in the basin of attraction of **0**. A numerical plot for $\lambda = 0.9$. Blue points $\rightarrow 0$ fast, red points $\rightarrow 0$ slow.

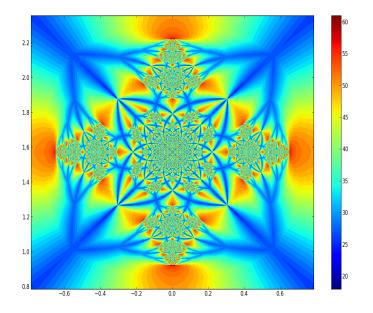


A numerical plot for $\lambda = 1$. Blue points $\rightarrow 0$ fast, red points $\rightarrow 0$ slow.



C

Around a pole for $\lambda = 0.7$. Thanks to Dan Goodman for code.



C